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Zusammenfassung  

Abstrakt: Kollisionen zwischen Vögeln und Flugzeugen stellen eine hohe Gefahr für die Luftfahrt und die Sicherheit der 
Vögel dar. Um diese Vogelschläge zu verstehen und vorzubeugen, ist es von entscheidender Bedeutung Wissen über die 
Faktoren zu kennen die zu den Vogelschlägen führen. Dennoch variiert die Verfügbarkeit von Daten stark und es ist 
schwierig diese in ein globales Bild zusammenzusetzen, obwohl es doch ein globales Problem ist. Ziel des Papiers ist es, 
diese Lücke zu schließen indem eine in die Tiefe gehende Besprechung von Studien und Statistiken bereitgestellt wird um 
einen prägnanten Überblick über das Vogelschlagproblem in der kommerziellen Luftfahrt auf internationalem Level zu 
bekommen. Das Papier zeigt die Faktoren auf, die zum Vorfall und den potentiellen Konsequenzen beitragen in Bezug auf 
Auswirkungen auf Flug und Schaden. Dem folgt eine Präsentation der aktuellen bestehenden risiko-reduzierenden 
Maßnahmen sowie Beschränkungen. Das Papier schließt mit einem Einblick in die aktuellen neuartigen Untersuchungs- und 
Forschungsmethoden  um Vogelschläge zu verhindern. 

Summary  

Abstract: Collisions between birds and aircraft pose a severe threat to aviation and avian safety. To understand and prevent 
these bird strikes, knowledge about the factors leading to these bird strikes is vital. However, even though it is a global 
issue, data availability strongly varies and is difficult to put into a global picture. This paper aims to close this gap by 
providing an in-depth review of studies and statistics to obtain a concise overview of the bird strike problem in commercial 
aviation on an international level. The paper illustrates the factors contributing to the occurrence and the potential 
consequences in terms of effect on flight and damage. This is followed by a presentation of the risk-reducing measures 
currently in place as well as their limitations. The paper closes with an insight into current research investigating novel 
methods to prevent bird strikes. 
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Abstract: Collisions between birds and aircraft pose a severe threat to aviation and avian safety. 
To understand and prevent these bird strikes, knowledge about the factors leading to these bird 
strikes is vital. However, even though it is a global issue, data availability strongly varies and is 
difficult to put into a global picture. This paper aims to close this gap by providing an in-depth 
review of studies and statistics to obtain a concise overview of the bird strike problem in commercial 
aviation on an international level. The paper illustrates the factors contributing to the occurrence and 
the potential consequences in terms of effect on flight and damage. This is followed by a presentation 
of the risk-reducing measures currently in place as well as their limitations. The paper closes with 
an insight into current research investigating novel methods to prevent bird strikes. 

 
Keywords: airport; air traffic management; aviation; bird strike; operations; risk; safety; wildlife 
management 

 

 
1. Introduction 

Collisions between birds and aircraft are as old as aviation. The first recorded bird strike was 
experienced by the Wright Flyer III on 7 September 1905 [1]. Bird strikes are regular events. Depending 
on the country, average bird strike rates between 2.83 and 8.19 per 10,000 aircraft movements were 
reported in civil aviation for the past years. Examples are provided in Table 1. 

 
 

Table 1. Average bird strike rates (number of strikes per 10,000 aircraft movements) for different countries. 
 

Country Bird Strike Rate Period Considered Source 

Australia 7.76 2008–2017 [2] 

Canada 3.51 2008–2018 [3] 

France 3.95 2004–2013 [4] 

Germany 4.42 2010–2018 [5] 

UK 7.76 (all) 4.62 (confirmed) 2012–2016 [6] 

USA 2.83 2009–2018 [7] 

 
 

Nevertheless, while collisions between birds and aircraft usually result in lethal consequences 
for the bird, aircraft damage is rare. Two to eight percent of all recorded bird strikes result in actual 
aircraft damage in civil aviation [6–10]. Regarding operational impacts, between six and seven percent 
of all reports indicate a negative operational effect on the flight [6,7,10]. It is estimated that bird strikes  
cause annual costs of at least one billion US $ to the worldwide commercial aviation industry [11].     
Due to incomplete reporting, these figures have to be interpreted as conservative estimates [12–14]. 

As accidents have demonstrated, collisions between birds and aircraft also bear the potential for 
catastrophic outcome for the involved aircraft. As of 11 November 2019, bird strikes were determined 
to have caused 618 hull losses and 534 fatalities since the beginning of aviation [1]. 

To understand the factors contributing to the risk of bird strikes and find suitable measures for 
their prevention, broad data analysis is a prerequisite. This requires consequent reporting by the parties 
noticing bird strikes [15]. Furthermore, international standards and common definitions are needed. 
Thereby, the focus lies on civil aviation in general and commercial aviation in particular. The first 
section of this paper deals with the current state of data availability and consistency. Subsequently, 
the factors determining the risk of bird strikes are introduced. Thereafter, measures taken on the 
ground, in the air and by regulatory means as well as their limitations are presented. Finally, current 
research and its potential to further reduce the risk of bird strikes is discussed. 
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2. Definitions and Data Availability 
 

Bird strikes are defined as a collision between a bird and an aircraft which is in flight or on a take off 
or landing roll [16]. To include other animals colliding with aircraft, the term can be broadened to 
wildlife strike. In general, statistics are provided for birds and terrestrial animals separately, for example 
by the aviation authorities of Canada, the United States of America  (USA)  and  the  United  Kingdom  
(UK). One exception is Australia, where all flying animals, including flying foxes and bats, are included in      
the bird strike statistics [2,6,7,10]. 

 
This paper focuses on collisions involving birds and the term bird strike is used. First, the vast 

majority of wildlife strikes occur with birds, for example:  98% in Australia, 95% in Canada and 95%    
in the USA [2,7,10].  Second, terrestrial animals can be prevented from entering airport perimeters,    for 
example by installing fences [17]. In contrast, birds can enter airfields regardless. Furthermore, they do 
not only pose a risk on the airfield, but also in the approach and departure corridors. The related 
challenges are addressed in this paper. 
 

International Civil Aviation Organization (ICAO) requests its contracting states to report bird 
strikes [18]. Data are usually collected by the Civil Aviation Authorities (CAA). Its quality relies on 
consistent reporting by the parties involved in aircraft and airport operations: The pilots, maintenance 
crews, air traffic control and wildlife control. In recent years, the importance of complete bird strike 
reporting has been recognized and has since been encouraged or even enforced by many CAAs 
across the world. Within this context, the European Union (EU), which previously had no consistent 
reporting regulations among its member states, put into force mandatory bird strike reporting in 
2015 [19]. All parties involved in air traffic operations within the EU have been obliged to report 
observed bird and wildlife strikes [20]. In Australia, mandatory reporting has already been in place for 
several years. Furthermore, in many countries, action has been taken to increase the motivation to 
report. This has resulted in increasing numbers of bird strike reports. For example, in the USA, where 
a mainly voluntary reporting system is in place, the ratio between all reported bird strikes and all 
bird strike occurrences increased from 41% to 91% for commercial aircraft in the period from 1990 to 
2013 [13]. When including airports, which handle general aviation and commercial traffic, the share 
amounts to 47%. In the UK, pilots have been required to report all bird strikes since 2004. Before, 
only damaging bird strikes had to be reported [21]. The number of reports strongly increased since 
the implementation of this mandate [22]. Both in the USA and UK studies, the reason for the rise is 
mainly attributed to better reporting, rather than increased bird strike risk. The authors of both studies 
(Refs. [13,22]) reason with the ratio between number of damaging strikes and all strikes. In case of 
an increased risk, the rise of reports would be expected to be similar for damaging and non-damaging 
strikes. However, in both countries, the proportions of damaging strikes fell. This is supported by the 
latest USA data for the period until 2015, as visualized in Figure 1. In the subsequent years, a slight 

   increase can be observed. Data from the years to follow will have to confirm if this represents the    
   beginning of a trend in the opposite direction and bird strike risk is increasing. 
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Figure 1. Ratio between damaging strikes and all strikes in the USA between 1990 and 2018. Source: [7]. 

 
Over the past few years, bird species hazardous to aviation have expanded and adapted to urban 

areas [23,24]. As air traffic is rising as well [25], the likelihood of encounters increases due to a higher 
number of airspace users. However, due to better reporting, the increasing trend in the number of bird 
strikes does not necessarily—or at least not exclusively—imply a rising risk of bird strikes. 

The bird strike data collected and the level of detail published vary among the different countries. 
For example, some countries provide the altitude distribution via flight phases, others in altitude 
bands of various intervals. Therefore, comparisons of bird strike rates in particular and statistics in 
general have to be performed carefully. 

The subsequent chapters describe the factors contributing to the bird strike risk. The ICAO 
defines a safety risk as the predicted probability and severity of the consequences or outcomes of a hazard 
[26]. This definition is applied here. 

3. The Probability of Bird Strikes 

The probability of bird strikes is determined by many parameters such as altitude, time of day, 
environmental conditions, geographical location, season and the aircraft itself [27]. This chapter 
provides an overview of these individual components. 

3.1. Altitude 

The highest probability of bird-aircraft collisions is at low altitudes [28]. According to Dolbeer et al. [29], 
88% of the bird strikes in the USA over the past 27 years have occurred below 2500 ft (71% below 
500 ft). A European study concluded that even 95% of all strikes occur below 2500 ft (70% below 
200 ft), when considering worldwide traffic [30]. The probability decreases with increasing altitude, 
as Figure 2 visualizes. This corresponds to the flight phases for which most bird strikes are reported: 
takeoff, initial climb, landing and approach [31]. However, the share of damaging bird strikes increases 
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with increasing altitude.  Contributing factors are a higher kinetic energy due to increasing bird size  
and rising aircraft velocity. Furthermore, while mitigation measures at airports have been shown to be 
successful in reducing the number and consequences of bird strikes, outside the airport boundaries,   
the options for counteracting measures are limited [32]. 

 

 
Figure 2. Distribution of bird strikes by altitude band that occurred between 1990 and 2018 in the USA, 
where the altitude was known (72% for all strikes, 70% for damaging strikes). Source: [7]. 

 

3.2. Season 

The likelihood of bird strikes depends on seasons. Figure 3 illustrates the distribution of bird 
strikes over the year for regions in the northern and southern hemispheres. It can be seen that, 
during the respective winters, the risk of collisions between birds and aircraft is lowest. In contrast, 
during summertime, when the juveniles of many bird species fledge especially in the countries in 
the Northern hemisphere [33–35], the highest number of bird strikes is recorded. During spring and 
autumn, an increased bird activity due to migration between summer and winter residences leads to 
more strikes [36,37].
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Figure 3. Seasonal distribution of bird strikes for Australia, Europe, Canada and the USA [7–10]. 

3.3. Location and Environmental Conditions 

The probability of bird strikes depends on the geographical location [36]. This is related to the 
abundance of different bird species with variable behavior, size or  tendency  for  flocking.  In  the  
direct airport environment, the landscape characteristics are a determining factor [38]. In regions 
situated along a migratory flyway, the danger of collision remarkably increases during migration 
seasons [36,37]. Another factor to be considered is the time of day.  When comparing the number of  
bird strikes to the number of flights, most occurrences take place during the night [39,40]. This is 
caused by increased bird activity at night, especially for migrating birds [41]. Furthermore, many 
airports cease dispersing activities at night. However, because much more air traffic takes place during 
the daytime, the absolute number of strikes is higher in this period [31,42]. 

In addition to the geographical location, the attractiveness of an airport’s environment also 
strongly influences the risk of bird strikes. The ICAO requests the bird strike hazard to be assessed at 
every airport [43]. In case of a determined bird strike risk, action should be taken to reduce the number 
of hazardous birds at and around the airport. 

Furthermore, potential attractants such as sources of food and water on the field as well as in      
the vicinity of the airport should be prevented or eliminated, as they significally influence the risk          
of bird strike [38,43]. For this purpose, the ICAO’s Airport Service Manual [44] requests an airport 
wildlife management plan which has to include the environment up to a radius of  13  kilometers 
around the airport, and, if necessary, beyond. Namely, significant attractants—sources for food, water 
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and shelter—should be removed and off-airport bird monitoring performed [44]. 
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Not only the presence of birds but also the characteristics of aircraft using a certain airspace have 
an influence on the likelihood of bird strike. These influences are described subsequently. 

3.4. Aircraft Characteristics 

Individual aircraft characteristics are another determining factor in the probability of bird strike. 
Due to their large size and high suction effect, turbofan engines are more likely to ingest birds than 
other engine types [45]. Moreover, due to their higher speeds during take-off and landing, turbofan 
aircraft are more difficult to avoid than other aircraft types [46]. Over the last years, turbofan engines 
increased in diameter [47], which increases the risk of ingestion even further. The number of turbofan 
aircraft as well as their share in the total number of aircraft increased significantly over the last years:  
In 2006, 20,444 commercial turbofan aircraft were registered, which corresponds to 79.6% of the 
commercial aircraft fleet of the time.  In 2015,  the number of  commercial turbofan aircraft amounted  
to 22,690, which corresponds to 86.5% of all commercial aircraft [48,49]. According to Canadian data 
from 2008 to 2018, turbofan aircraft experienced 1.7 times more bird strikes than aircraft equipped 
with propellers [10]. 

Aircraft noise emission has an effect as well: the quieter an aircraft, the higher the risk that birds 
cannot avoid them, as they hear the aircraft approaching too late to initiate a successful avoidance 
manoeuvre [50]. Over the past years, airlines have been replacing their older aircraft fleet with more 
efficient and quieter aircraft which contributes to an increase in bird strike risk [47,51]. 

4. The Severity of Bird Strikes 

The consequences of a bird strike for the aircraft involved are depending on the circumstances of 
the individual collision. The major criterion is kinetic energy 

Ekin = 
1  

· m · v2 (1) 

where Ekin refers to kinetic energy in Joule, m to mass in kg and v to velocity in m . 
With  regard to mass, the number of birds involved, their biomass as well as parts of the aircraft  

hit, determine the consequences of a collision for the aircraft [24]. Considering the velocity component, 
due to the high relative difference, mainly the aircraft’s speed is relevant. 

Based on data from the Federal Aviation Administration (FAA)’s National Wildlife Strike Database 
for Civil aviation, Dolbeer performed a study to evaluate the consequences for damages resulting from 
bird strikes below and above 500 ft in 2011 [32]. Even though the majority of strikes—approximately 
75% in the period between 1990 and 2009—happen below 500 ft, only 55% to 65% of the damaging 
strikes took place in this altitude band. This indicates that a large proportion of strikes above 500 ft 
cause in damage, which is also reflected in Figure 2. This observation is supported by a study  
performed for the European Aviation Safety Agency (EASA)  in  2009  [24]  that  takes  into  account  
data from civil aircraft from the UK and Canada for the period between 1990 and 2007. For these 
countries, 57% of all strikes happened during take-off and landing, 39% during climb and approach   
and approximately 1% during en-route flight for the observed period. The remaining 3% of all strikes 
happened during taxi and parking. The amount of damage per flight phase increases with increasing 
height: 3.7% of all strikes during take-off and landing, 7.9% of all strikes during approach and climb, 
and 34% of the en-route bird strikes caused damage. This can be explained by larger aircraft velocities 
at higher altitudes as well as by the fact that larger birds such as Canada Geese and Turkey  Vultures      
fly at higher altitudes [24,52,53]. The combination of these two factors lead to a significant increase in 
the kinetic energy of the impact and thus to a higher probability of damage with increasing height. 

4.1. Parts Struck 

The majority of bird strikes hit the large front-parts of the aircraft: the nose, the wings’ leading 
edges, and the engines. The shares of strikes to the various parts differ between different sources 
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(e.g., [2,7,31]).  Exemplary,  Figure 4 presents the proportion of damaging and non-damaging strikes   
per aircraft component.  The magnitude of damage resulting from a bird strike strongly depends on    
the part(s) struck.  Small parts such as the pitot tube and lights are most vulnerable to damage due        
to their exposed positions and missing requirements on impact-resistance. The danger of hazardous 
consequences for the aircraft is especially high, when large or multiple birds are ingested into one or 
more engines because this can lead to partial or total loss of thrust. This is reflected by the accident 
statistics: Out of the 30 accidents involving hull losses and fatalities that happened since 1960, 23 were 
a result of one ore more engines struck [1,54,55]. Currently, approximately 94% of the world’s aircraft 
fleet is equipped with two  engines  only  [49].  Due  to  the  resulting  smaller  redundancy,  the  danger 
is larger when birds are ingested [51]. Thereby, substantial engine damage is most likely during 
departure [56]. Over the past years, two major crashes occurred due to the ingestion of birds in both 
engines of twin-engine aircraft. In January 2009, an Airbus A320 aircraft lost thrust in both engines 
during initial climb out of LaGuardia Airport after the ingestion of several Canadian Geese. The crew 
successfully performed an emergency landing on the Hudson river [57]. In August 2019, a similar 
accident took place in Moscow when the crew of an Airbus A321 performed a successful emergency 
landing in a corn field after the engines failed due to ingestion of multiple gulls during departure [58].  
In both cases, all passengers and crew survived. 

 

 

Figure 4. Total number of bird strikes per part indicating number of damaging strikes for Europe, 
Canada and the USA [7,8,10]. 

4.2. Risk of Accidents 

The number of serious bird strike-related accidents are comparable to serious accidents due 
to other environmental causes, as Figure 5 shows. This figure compares the share of fatal and 



 

 
                                                                  39. Jahrgang 2020                                 10                     
 
 
 

 
 

hull loss accidents resulting from environmental hazards for the periods 1960–1999 and 2000–2015. 
To compensate for the different length of the compared periods, the shares and not absolute numbers 
of accidents are provided. Over the last few decades, technological improvements and additional 
safety equipment have been introduced to reduce the number of windshear and turbulence related 
accidents [59]. The effect of these measures, especially on turbulence-related accidents, is visible in 
Figure 5. On the other hand, the shares of serious accidents due to bird strike, lightning strike and 
thunderstorm increased. 
 

 

Figure 5. Comparison of different accident causes for the periods 1960–1999 (left) and 2000–2015 (right) 
(sources: [55,60]). 

4.3. Effect on Flight 

Depending on the magnitude of  the  damage,  there  is  a  direct  operational  effect  on  the  flight. 
In addition to the aircraft involved, airport operations and other airspace users may also be impaired. 
Table 2 provides an overview of operational impacts for various countries and continents. In addition, 
the worldwide reports collected by ICAO [31] are presented. While the share between none and 
unknown varies among the sources, the effect-categories have a similar influence. 

Independent of their impact on a flight, an examination to ensure the airworthiness of the aircraft 
involved has  to  be  performed  before  the  next  departure  [61].  Therefore,  not  only  damaging  but 
all recognized bird strikes affect operations and consequently result in costs. Furthermore, airport 



 

 
                                                                  39. Jahrgang 2020                                 11                     
 
 
 

operations might be impaired—for example due to temporary runway closure to remove bird remains. 
 
 

 
 

4.4. Costs of Bird Strikes 

Little information is available about the costs resulting from bird strikes. This is related to the 
reluctance of airlines to report damage costs due to competitive reasons [62]. Global estimates are from 
the early 2000s. For example, depending on the damage caused, Sodhi approximated in 2002 that the 
costs for engine repairs range from US $ 250,000 to one million US $ [50]. Allan et al. approximated 
in 2003 the total annual costs for the world aviation fleet to be approximately one billion US$ [63]. 
Based on data obtained from United Airlines (UAL) for the years between 1999 and 2002, costs of  
a non-damaging strike sum up to approximately US $22,417 per strike. This includes, for example, 
an aircraft check following a bird strike. They conclude that the average costs for a damaging strike 
amount to US$225,329. More recent data are available from the FAA [7], which is summarized in 
Table 3. Some of the reported strikes between 1990 and 2015 include information about repair and 
indirect costs. Indirect costs result from lost revenues, passenger rebooking, aircraft rescheduling and 
flight cancellations. On average, the repair costs amounted to US $ 164,595, the average indirect costs 
to US $ 27,599 , resulting in total average costs of US $ 192,194 per damaging strike. However, this 
information was included only in a small proportion of all reports, as Table 3 indicates. Hence, these 
numbers might not be representative. Furthermore, due to incomplete reporting of strikes in general, 
the authors of the study presume a strong underestimate. Therefore, projected costs are based on the 
averages obtained from the reports that include cost information. These are also presented in Table 3. 

 
Table 3. Repair and indirect costs resulting from wildlife strikes in the US from 1990 to 2018 [7]. 

 

Cost Type Total/Average Reported Cost (US $) Projected Cost (US $) Number Reports 

repair costs total 4.6 M 4465 M 4534 2.2% 
 average 158,573 154 M 156 

indirect costs total 726,044 962 M 3683 1.7% 
 average 25,036 33 M 127 

total costs total 
average 

5.3 M 
183,609 

5427 M 
187 M 

a 

a Some reports might contain both information about repair and indirect cost. Hence, a total number of reports 
cannot be obtained. 

 
Another type of cost can be expressed in aircraft downtime. Based on the 5% of reports including 

information about aircraft downtime in [7], an average of 101 hours per strike result. When including 
missing reports, the authors project an average of 4521 days of aircraft downtime per year due to 
wildlife strikes. 

5. The Counteracting Measures 

To reduce the risk of bird strikes, many measures have been implemented. They can either be 
ground- or aircraft-related. On the ground, the focus of bird strike hazard reduction in civil aviation 
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explicitly lies on the airports and their direct surroundings. This is related to the altitude distribution 
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of bird strikes with the highest risk at low altitudes [40,44]. In this context, the ICAO requests airports 
to maintain a wildlife strike program [43,44]. 

In addition to the measures to prevent bird strikes, regulations to minimize the risk of damage 
are in force. These are described in the end of this section. 

5.1. Mitigation Measures on the Ground 

Successful bird strike prevention at airports requires the identification of hazardous species as well 
as the the understanding of the types and reasons of their movements [64,65] Multiple risk assessment 
procedures have been developed to support the bird strike units in prioritizing and performing their 
measures. Depending on the model, the input parameters include species, their abundance and 
potential to cause damaging strikes as well as cost-estimates (for example [22,46,51,66]). 

These range from habitat management to exclusion, harassment, capture, and shooting of 
wildlife [51]. Within habitat modification, the airport grounds are made as unattractive to birds as 
possible, by removing sources for water, food and shelter or by making them inaccessible [67]. Habitat 
management is considered as the foundation of successful and long-term wildlife management. 
Exclusion can partly be achieved by wires, netting or covers. Furthermore, chemical repellents such as 
anthraquinone or methyl anthranilate are used [51]. The category harassment includes all 
techniques which aim at chasing away birds which have already entered the airfield. The main groups 
of harassing tools are auditory deterrents such as gas exploders, alarm and distress calls as well as 
pyrotechnics, visual repellents such as effigies, predator models, lasers, reflecting materials, lights, 
mirrors as well as drones, trained dogs and falconry [68]. The category capture and relocation 
includes trapping of birds on the airfield and reassigning them to new habitats further away from 
the airport. Among others, a minimum distance between the airport and translocation area should 
be kept to limit returns to the airport [69]. The lethal category covers shooting of birds and pursues 
two goals. First, the population density of critical bird species should be limited to reduce the risk 
of strikes. Second, by shooting target individuals of a group, habituation to other techniques by the 
remaining birds should be limited. The efficacy of shooting birds is not entirely clear. Furthermore, 
lethal methods are forbidden or 
restricted in many countries [70,71]. 

The described efforts at airports are vital for reducing the risk of bird strikes and many control 
programs have shown positive effects (see, e.g., [7,23] ). However, airport-bound wildlife management 
is limited in its efficacy. Firstly, birds can grow accustomed to harassing methods, which reduces 
their effectiveness over time. Secondly, the range of the dispersing measures lies within the airport 
boundaries rather than in the entire area with increased risk, i.e., below 3000 ft [28,38]. Considering 
that there is an increasing trend of damaging strikes outside the airport boundaries [32], expanding 
the horizon of bird strike hazard mitigation beyond the airport fences is essential [28]. 

Therefore, aircraft-related risk-reducing measures have been researched over the past few years, 
as described in the following section. 

5.2. Aircraft-Related Mitigation Measures 

Various studies on bird reactions to approaching aircraft have been performed to study the options 
of reducing strikes by enhancing the perceivability of the aircraft (e.g., [72–77]). They commonly 
concluded that many bird species try to avoid collisions with aircraft. However, due to their reaction 
time and the aircraft’s high speed, especially during flight, the birds’ attempts to escape are often 
unsuccessful. This is even true for experienced birds. Even though they were found to initiate their 
escape earlier than inexperienced birds, the remaining time to collision is usually insufficient to prevent 
a collision [78]. By increasing an aircraft’s perceivability, birds can detect its approach earlier and the 
chances for a successful avoidance manoeuvre rise [72,79]. The majority of research in this area has 
focused on increased visibility. A rather general study analysed the correlation between fuselage color 
and bird strike risk [75]. The authors concluded that it is likely that ’enhancing aircraft visually 
through a bright color scheme might facilitate a bird’s ability to detect and distinguish aircraft shape in 
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avoidance behavior.’. For turboprop aircraft, such an effect can be gained by applying colored patterns 
to the propeller to enhance the aircraft’s contrast against the sky [80,81]. 

Research on increasing aircraft lighting found that pulsing light has the potential to enhance 
avian visual awareness [73,74,82]. However, as visual perception depends on the bird species, different 
pulsing frequencies and wavelengths might be required [83]. An experiment identified that certain 
wavelengths do trigger strong avoidance reactions of birds, while other wavelengths did not cause 
any behavioral response. This implies that the choice of lights to be installed can support successful 
collision avoidance [77]. 

Long-term tests with two airlines demonstrated the safety potential of implementing a pulsing 
light system to aircraft. The system tested pulses for the existing landing and logo lights to enhance 
aircraft visibility and the predictability of the aircraft’s flight path at night. The system was installed 
on aircraft from Alaska Airlines, a regional airline in the USA for a duration of three years. Compared 
to the three years previous to installation, the number of bird strikes had decreased by 33.5% [84]. 
In another trial, ten aircraft of Qantas Airways were equipped with the system. The installation 
remained between 12 and 24 months. Compared to the fleet’s non-equipped aircraft, a reduction in 
bird strikes between 54% and 66% resulted [85]. Therefore, pulsing lights seem to be a promising 
addition to wildlife management at airports, especially to prevent bird strikes at low velocities. 

5.3. Regulatory Mitigation Measures 

Table 4 indicates that the majority of reported bird strikes do not result in any severe consequences 
for the involved aircraft.  This has three main causes.  Firstly,  many bird strikes involve small birds     
(cf. e.g., [45]). Because of their lower mass, they have low kinetic energy and are therefore much less 
likely to cause damage. The second reason is the impact-resistance of aircraft. To meet the certification 
requirements by the Civil Aviation Authoritys (CAAs), aircraft have to be able to withstand a certain 
impact caused by birds, as described subsequently. Thirdly, requirements for reduced aircraft speeds 
below 10,000 ft have proven effective [27]. 

 
Table 4. Magnitudes of damage resulting from bird strikes in Europe and the US in percentages [8,14]. 

 

Damage Europe (2008–
2018) 

USA (1990–
2015) 

none 63 51 

unknown/uncertai
n 

30 46 

minor a 4 2 

substantial b 2 <1 

destroyed <1 <1 

a After experiencing minor damage, simple repairs or a replacement without extensive inspection suffices to 
render the aircraft airworthy [86]; b When experiencing substantial damage, an aircraft’s structural strength, 
performance or flight characteristics are adversely affected and a major repair is required [86]. 

 
5.3.1. Certification Requirements 

Aircraft have to meet certification requirements to prove their airworthiness [87]. In this chapter, 
the European regulations as defined by EASA and the US regulations by the FAA are considered. 
Depending on their size, aircraft are grouped into categories. Airplanes used for commercial aviation 
are either in the category Normal (EASA)/Normal Category Airplanes (FAA) or Large Aeroplanes 
(EASA)/Transport Category Aircraft (FAA). The categories and their descriptions, which are mostly 
corresponding, can be found in Table 5. By 2014, approximately 97% of aircraft in the worldwide 
commercial fleet were certified as Large Aeroplanes/Transport Category Aircraft; the remaining 3% 
were certified as Normal/Normal Category Airplanes [49]. In Europe, the majority of commercial 
aircraft is certified by the standard CS 25—Large Aeroplanes [88]. The US-American counterpart 
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consists of the Federal Aviation Regulations (FAR) 14 CFR Part 25—Transport Category Airplanes [89]. 
These regulations contain the following requirements regarding damage-tolerance of aircraft parts. 

 
Table 5. Certification categories relevant for commercial aviation aircraft in Europe and the US 
(CS: Certification Specifications; CFR: Code of Federal Regulations). 

Europe—EASA US—FAA 

CS-23 Normal Aeroplanes aeroplanes with 
a passenger-seating configuration of 19 or 
less and a maximum certified take-off mass 
of 8618 kg (19,000 lbs) or less [90] 

 
CS-25 Large Aeroplanes turbine-powered 
aeroplanes of more than 5700 kg (12,500 lbs) 
maximum certified take-off weight, 
excluding commuter airplanes which are 
covered by the  category  Normal 
Aeroplanes [88,91] 

14 CFR Part 23 Normal Category Airplanes 
airplanes with a passenger-seating 
configuration of 19 or less and a maximum 
certificated take-off weight of 19,000 lbs or 
less [89] 

14 CFR Part 25 Transport Category Aircraft 
multi-engine airplanes with more than 
19 seats or a maximum take-off weight 
greater than 19,000 lbs [92] 

 
 

 

• Windshield: withstand without penetration an impact of a 2 lb bird at cruise speed. 
• Structure: Successfully completing a flight after an impact with a 4 lb bird when the aircraft’s 

velocity relative to the bird along the aircraft’s flight path equals cruise speed at sea level or 
0.85 cruise speed at 8000 ft, whichever is more critical. 

• Empennage: Successfully completing a flight after an impact with an 8 lb bird at cruise speed 
(FAA only). 

• Pitot tubes: sufficient separation to prevent damage to all of them in case of a bird strike. 

Aircraft in the category CS 23–Normal Aeroplanes respective 14 CFR Part 23—Transport Category 
Airplanes only have to prove an impact-resistance of the windshields. Both the European and the US 
regulations demand that each windshield and its supporting structure directly in front of the pilot must 
withstand, without penetration, the impact equivalent to a two-pound bird when the velocity of the 
aeroplane is equal to the aeroplane’s maximum approach flap speed. [89,90]. Consequently, category 23 
aircraft are more vulnerable to damage due to collisions with birds. 

Regarding the impact-resistance of engines, which have to be certified independently of the 
aircraft,  separate EASA and FAA  regulations are in force.   To  prove that an engine responds in       
a safe manner to bird ingestion, it must undergo an engine ingestion test. The European regulations 
(CS-E 800 [93]) demand tests considering the ingestion of single large birds and large flocking 
birds.   The FAR  add tests for small and medium single and flocking birds [94].   Depending on     
the engine’s diameter, different criteria regarding bird mass and thrust settings are required. In all 
tests, the ingestion of the bird must not lead to a hazardous engine effect. EASA defines the following 
events as Hazardous Engine Effects [93]: 

i. non-containment of high-energy debris, 
ii. concentration of toxic products in the engine bleed air for the cabin sufficient to incapacitate crew 

or passengers, 
iii. significant thrust in the opposite direction to that commanded by the pilot, 
iv. uncontrolled fire, 
v. failure of the engine mount system leading to inadvertent engine separation, 
vi. release of the propeller by the Engine, if applicable, 
vii. complete inability to shut the engine down. 
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5.3.2. Speed Limitations 

A further reason why only a small number of all bird strikes lead to aircraft damage results from 
regulations for maximum aircraft speeds of 250 kts (Knots-Indicated Airspeed (KIAS)) below 10,000 ft 
as a matter of Air Traffic Control (ATC) airspace organization. Among others, the limitation of speed 
should reduce the kinetic impact of bird strikes in the areas where bird strikes mostly occur [29,40]. 
Many countries such as Canada, Mexico, the USA and Germany have applied such a regulation [95,96]. 

6. The Next Step 

Over the past few years, the awareness has risen that increasingly includes the parties actually 
handling air traffic—ATC and the pilots—is vital to further reduce the risk of bird strikes in civil 
aviation [28]. Currently, the controllers can provide general warnings on bird activity in the airport 
area based on visual observations or reports by pilots [27,97]. Pilots in commercial aviation can mainly 
enhance their situational awareness by studying current bird strike risk information in the form of 
BIRDTAMs (a special form of Notice to Airmen (NOTAM) which provides information on current bird 
strike risk [98]) and bird migration reports, where available [27,98,99]. Furthermore, they should stay 
alert throughout the flight and report observations on enhanced bird activity as well as experienced 
bird strikes [27]. In general aviation, route planning should consider the avoidance of areas abundant 
of birds in addition. By flying at high altitudes, the probability, and by flying at low speeds, the impact 
of a potential bird strike can be reduced [27,99]. 

To introduce operational bird strike prevention further involving ATC and pilots, experiences 
from military aviation can serve as an example. As military operations are often performed at low 
altitude, military aircraft spend much more time in areas with high bird densities than civil aircraft. 
Hence, military operations are more vulnerable to bird strikes than their civil counterparts. For this 
reason, several air forces across the world have started to implement procedures to adjust flight 
planning based on current bird strike risk since the 1970s (e.g., [100–102]). In the beginning, this mainly 
included flight restrictions during peaks of bird migration [37]. With developments in technology and 
increasing data-sets to model and predict bird movement, a more dynamic and short-term planning to 
avoid high-risk air spaces at a given time has become possible [28]. The military efforts have mainly 
focused on en-route intervention of flight operations for low-level training flights [37,102]. For civil 
aviation, an application of these procedural approaches at and around the airports would be useful and 
is seen as an important next step in bird strike prevention [28]. In contrast to military aviation which 
has a certain flexibility in flight planning, civil aviation is bound to schedules [103]. Therefore, regular 
flight restrictions in cases of high risk are unfeasible. On the other hand, dedicated real-time warnings 
of high-risk situations resulting in short-term delays could be applicable. Different levels of advice 
could be possible. First, the general situational awareness of the pilots could be raised. Second, aircraft 
taking off could be advised to adjust their rate of climb to quicker pass critical zones. In addition, third, 
in case of high collision risk, air traffic could temporarily be held back. 

According to Annex 15 of ICAO, ATC shall provide current information on the presence of birds 
constituting a potential hazard to aircraft operations [104]. However, in order to be able to give 
precise warnings rather than general information on bird movement,  additional surveillance 
technology  is required. 

An increasing number of airports have installed radars dedicated to tracking birds, so-called 
avian radars, over the past few years. They are designed to track individual birds as well as flocks 
of birds up to distances of 11 km and heights of 1.5 km [105]. While initial installations covered 
two-dimensional positions only, systems providing three-dimensional positions are increasingly 
becoming available. Moreover, radar ranges are increasing and the data quality is improving. Thus far, 
these radars are mainly used by local wildlife control to detect hotspots of bird movements at the 
airfield. However, avian radars, possibly in combination with other surveillance technology such as 
thermal or video imaging, have the potential to serve as input for procedural, real-time bird strike 
prevention. A unique implementation of a radar-based bird strike advisory system for civil aviation is 
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located at the Durban King Shaka International Airport, South Africa [28,106]. During summer, around 
three million swallows visit a roosting site which is located on the extended runway center line, 2.6 km 
from the airport. At dawn and dusk, the birds move in large flocks to and from this site. The radar  
is used to detect these movements. Based on the observed risk level, ATC is advised to temporarily 
hold back air traffic. Contributing factors to the successful implementation of the procedures are 
the detectability of huge swarms of birds by avian radars, the short and distinctive periods of threat 
and the relatively low number of aircraft movements at the airport [28]. The general introduction 
of comparable procedures at other airports could be limited by the following factors. In contrast to 
King Shaka airport, bird strike risk is more random at other airports with respect to number of birds 
and time of day. The ability of avian radars to detect individual birds, even large ones, close to the 
ground as well as with increasing distance from the radar, is limited [107–109]. Therefore, not all birds 
are observed by the radar and no warning for potentially critical strikes can be presented due to the 
missing information. Moreover,  tracks of individual birds are more difficult to predict than those  
of swarms. This reduces the potential positive effect on safety and to superfluous warnings in case 
of falsely predicted bird movement. Furthermore, bird strike risk is distributed throughout the day. 
This could lead to increased workload for the controllers and to to unjustifiable reduction in runway 
capacity at high-density airports. 

An ongoing FAA study has addressed the question of workload increase for controllers when 
involving them in the bird strike hazard reduction process [110]. In human-in-the-loop simulations, 
controllers were presented with four test conditions in which they had to control air traffic at an airport. 
In the baseline scenario, bird activity information was provided as observations by pilots transmitted 
via radio, representing current procedures. In the three remaining conditions, information was 
provided in different ways via the controller’s Human–Machine Interface (HMI). Initial results 
indicate that the controllers appreciate the increased situational awareness. Moreover, the controllers 
reported a reduction in workload when receiving dedicated bird strike risk information via their HMI 
in contrast to information reported by pilots. A European study focuses on the potential effects on 
an airport’s safety and runway capacity when implementing procedural risk-reduction methods [111, 
112]. Fast-time simulations involving deterministic bird and aircraft movement revealed a potential 
for increasing safety and reducing cost with only a small impact on runway capacity [112]. Ongoing 
research is evaluating the effect when the limited predictability of birds is taken into account. 

Alternatively to ground-based warning systems, there are ideas to integrate radar-based alerting 
systems into the aircraft [113]. Independent of the chosen approach, a close collaboration between 
research and operational personnel is crucial for a successful implementation of new measures [114]. 
The presented initiatives to apply operational bird strike prevention based on the positive results 
from military aviation are preliminary. Nevertheless, they demonstrate the potential to further reduce 
the risk of bird strike by applying procedural measures. 

7. Conclusions 

Collisions between birds and aircraft pose a serious risk to aviation. They mostly influence airport 
and aircraft operations and the efficiency of the air traffic management system. Furthermore, with their 
potential for severe damage and accidents, they pose a threat to aviation safety and a significant 
cost to the airline industry. The measures applied at airports, aircraft-mounted systems as well as 
regulations have reduced the risk and potential of accidents. Initial research on operational bird strike 
prevention by including air traffic controllers and pilots shows further potential to enhance avian and 
aviation safety. 
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